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Abstract— A method is proposed for forming para-
metric images in positron emission tomography,
using clustering kinetic analysis. To overcome the
dual problems experienced in voxel-based data,
of signal noise and the very long computational
time, the data are clustered before parameter es-
timation, and then an estimation procedure is ap-
plied to the averaged data in each cluster. Using
this algorithm, PET data are optimally clustered,
depending on the noise that is present, by hierar-
chically applying a statistical-clustering algorithm
based on Mixed Gaussian model. In a computer
simulation, the proposed method correctly clus-
tered noise-contaminated data. Applying the pro-
posed algorithm to '®F-FDG clinical data, physi-
ologically acceptable parametric images of glucose
metabolism in a brain were obtained in a practical
calculation time.

Keywords — positron emission tomography, ki-
netic analysis, compartment model, statistical
clustering, Mixed Gaussian model

I[. INTRODUCTION

In positron emission tomography (PET), an isotope-
labeled radio-pharmaceutical is administered, and its spa-
tial distribution is measured using computed tomogra-
phy. In this way, some functionalities in living tissue
can be derived as an image. Detailed information about
physiological functions is available if the history of the
concentration of the accumulated radio-pharmaceutical
in the target tissue can be measured (tissue time activ-
ity; t TAC). This can be done by performing multiple PET
measurements following the injection, and is known as a
kinetic analysis. Usually kinetic analysis is applied in a
region-of-interest (ROI) base, but if kinetic analysis is ap-
plied in a voxel base, more precise spatial information can
be obtained. However, voxel-based kinetic-analysis has
two drawbacks: poor signal-to-noise ratio in the voxel-
based tTACs, and a very large calculation time. To ad-
dress these problems, a method called clustering anal-
ysis for kinetics (CAKS) has been described [1] and [2].
This applies to both the two-compartment-two-parameter
model (2C2K-model) and the three-compartment-three-
parameter model (3C3K-model). In the CAKS for the
3C3K-model, voxel-based tTACs are categorized by pro-
jections spawned by the first and second principal com-
ponents calculated from a principal-component analy-

sis (PCA) applied to the tTACs of all voxels.

The concept of CAKS is that normalized tTACs with
the same shape can be expected to have the same kinetic
parameters. Therefore, noise can be reduced in an aver-
aged tTAC in a cluster with the same parameter. Because
this estimation process is applied not in a voxel-by-voxel
mode, but in a cluster-by-cluster mode, the number of in-
voked algorithms used in the estimation can be reduced,
and a shorter calculation time can be achieved.

In CAKS, clustering of projected points defined by
the principal components (PC) is important. A statistical
clustering algorithm based on the Mixed-Gaussian model
will be utilized in this study of the 3C3K (K, k2, k3)
model.

II. METHOD
A. Clustering Analysis for Kinetics

The CAKS algorithm for the FDG 3C3K model is in-
troduced. Eqn.1 is the analytic solution for the FDG 3K
model [3].

K,

C(t) =
() k2+k3

[k‘3 + ks exp {—(kg + k3)t}] (9 Cp(t) (1)

assuming ks is zero; where C(t) and Cp(t) denote the
tTAC, and the plasma time-activity curve (pTAC), re-
spectively. K and ks summarize the rates of tracer trans-
portation from plasma to the tissue-free FDG pool, and
its reverse direction; ks is a rate constant describing the
conversion rate from FDG to FDG-6-PO,4. In the clus-
tering method, K is considered to be a scaling factor,
whereas ko and k3 describe the shape of the tTAC. In
order to ignore K for clustering, a tTAC with n frames
is treated as an n-element vector, and normalized by its
amplitude according to Eqn.2.

C(t)

C'(t) = ——"—
(¥ fOTE C(r)dr

(2)

where C, C' and Tg denote a voxel-based tTAC, a nor-
malized tTAC, and the time of the final frame, respec-
tively. Next, PCA is performed on all the normalized
tTACs in order to determine n principal components.
Projection of the vectors onto a feature space defined by
the first two PCs can be utilized for clustering. The sta-
tistical clustering method of the Mixed-Gaussian Model
is applied here to achieve reliable clustering.
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B. Mized Gaussian Model (MGM)

There is a correspondence between a pair of (ka, k3)
and the point in the feature space. However, because
of noise in the measured tTAC, the actual point in the
feature space deviates from its true location. This fluctu-
ation is assumed to have a Gaussian distribution, and its
mean (u) and covariance (X) are estimated using the EM
algorithm [4].

The projected point onto the feature space is denoted
as a two-dimensional vector , with a probability p(x),
which is assumed to be the sum of the occurrence proba-
bilities of each cluster.

M
p(x) =Y p(x|j)P(j) (3)

J
where M, p(z|j),andP(j) are the number of clusters, the
probability of generating the value x from the j’th cluster,
and the existence probability of the cluster, respectively.

Because a Gaussian distribution is assumed, we can have
Eqgn.4.

. 1 1 _
p(zlj) = W exp {—5(13 - Mj)TEj 1(1” - Nj)}
J

P(j|x), which describes the probability of x belonging
to the j’th cluster, is estimated according to Eqn.3 and
Eqn.4 combined with Bayes’ theorem ?7.
: p(x|j)P(j)
P(jlx) = ——= 5
(ila) = P 5)
Finally, for each x, the cluster which has the highest prob-
ability is determined to be the associated cluster.

The number of voxels in a cluster should be 100 or
more so as to have adequate noise reduction. Since some
thousands of voxels are contained in a brain region in a
typical clinical PET, the total number of clusters exceeds
500. It is difficult and impractical to estimate all of pa-
rameters of MGM in such a large model. A hierarchal
clustering procedure is proposed to overcome this prob-
lem, in directly driving of the MGM algorithm. Firstly,
all the voxels are clustered into four categories, then each
cluster is further clustered into four categories, and so
on. If these steps are repeated three times the final num-
ber of cluster will be 64. In each step, the sample mean
and covariance are calculated, and the mean points for
the next MGM step are given using these values. Only
the prior probability of P(j) and the covariance of £; are
estimated.

All the programs are implemented in MATLAB ver.
5 on a Sun workstation.
C. Computer Simulation

To make sure that the hierarchal algorithm can
be properly clustered, a computer simulation was de-
signed. The centers of the 16 clusters are placed at
(0,0), ...,(0,3),(1,0),...,(3,3), and Gaussian random val-
ues were generated from each center with a covariance of

< 0(‘)5 005 ) The number of data for each cluster was

100. The MGM algorithm was applied to this data set,
and the estimated parameters were compared with their
true values.

D. Clinical Data

The CAKS algorithm was applied to typical FDG
clinical data to form parametric images of K, Dv(=
K1 /ko), ks, Ki(= koks/(K1 + k3)). These images were
obtained from an Alzheimer patient using HEADTOME-
IV (Shimadzu Corp, Japan) with 128-by-128 voxels and
seven slices, with arterial blood sampling and transmis-
sion scan. Corrections for dead-time and attenuation were
applied before reconstruction using ordinal filtered back-
projection algorithm with 8 mm as FWHM.

IIT. RESULTS
A. Validation of Hierarchal MGM Clustering

Fig. 1 shows the generated data points, and the true
and estimated centers with -, X and o, respectively. The
mean distance between the true and estimated centers
is 0.066. The hierarchal algorithm was able to derive ac-
ceptable estimates, but if the MGM algorithm was applied
directly to all the simulation data, it did not converge.

-1 0 1 2 3 4
Fig.1 : Simulation data and estimates

B. Clinical Parametric Image

Estimated clinical parametric images are show in Fig.
2. Physiologically, K; reflects the cerebral regional blood
flow (CBF) and the CBF is different for gray and white
matter (GM and WM). There is clear structure in the
brain in K, and the K; parametric image seems to be
reasonable. Notice also that the same thing arises in the
K; image because of a large difference in glucose utiliza-
tion between GM and WM. The interesting aspect of the
ks image is that there is no difference between GM and
WM. Further investigation will be required to determine
the meaning of this.

The calculation time was five minutes for clustering,
and one minute for estimation.
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Fig.2 : Clinical parametric images

IV. DISCUSSION AND CONCLUSION

Voxel-based kinetic-analysis to form parametric im-
ages in PET has the potential to derive spatial distribu-
tion of some functionalities in living human tissue. How-
ever, because of the high noise-level in voxel-based tTAC,
and the long calculation time, derivation of a parametric
image is not practical. CAKS is one approach to overcome
these problems, and a statistical algorithm for clustering
was proposed in this study. In CAKS, every voxel-based
tTAC is projected onto the feature space defined by the
first and second principal components in which a large
noise level is noticeable. The Mixed-Gaussian model has
attractive features, in that it tries to estimate the statisti-
cal properties of the projected tTAC to decide the bound-
ary for statistical clustering. By combining the MGM
estimation with the EM algorithm, a robust and quick
convergence can be attained. In a simulation study, the
estimated clusters correspond well to their true location.
If this clustering algorithm is applied to a clinical image,
the derived parametric images are physiologically reason-
able. The calculation time for the whole process to form
parametric images is approximately 10 minutes using an
ordinal UNIX computer. We conclude that CAKS with
hierarchal clustering and MGM, is a practical way to ex-
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tract more information about functionality from PET.

REFERENCES
[1] Yuichi Kimura, Hongbing Hsu, Hinako Toyama, Mi-
chio Senda, and Nathaniel M. Alpert, “Improved
signal-to-noise ratio in parametric images by cluster
analysis,” Neurolmage, vol. 9, no. 5, pp. 554-561,
May 1999.

[2] Yuichi Kimura, Kenji Ishii, Michio Senda, and
Nathaniel M. Alpert, “Formation of FDG paramet-
ric images based on clustering and principal compo-
nents,” in The Journal of Nuclear Medicine Abstract
Book Supplement, 2000, vol. 41, p. 397, St. Louis.

[3] Sung-Cheng Huang, Michael E. Phelps, Edward J.
Hoffman, Klear Sideris, Carl J. Selin, and David E.
Kuhl, “Noninvasive determination of local cerebral
metabolic rate of glucose in man,” American J. of
Physiology, vol. 238, no. 1, pp. E69-E82, Jan. 1980.

[4] Christopher M. Bishop, “Mixture models,” in Neural
Networks for Pattern Recognition, pp. 59-73. Oxford
University Press, 1995.



	Main Menu
	-------------------------
	Welcome Letter
	Chairman Address
	Keynote Lecture
	Plenary Talks
	Mini Symposia
	Workshops
	Theme Index
	1.Cardiovascular Systems and Engineering 
	1.1.Cardiac Electrophysiology and Mechanics 
	1.1.1 Cardiac Cellular Electrophysiology
	1.1.2 Cardiac Electrophysiology 
	1.1.3 Electrical Interactions Between Purkinje and Ventricular Cells 
	1.1.4 Arrhythmogenesis and Spiral Waves 

	1.2. Cardiac and Vascular Biomechanics 
	1.2.1 Blood Flow and Material Interactions 
	1.2.2.Cardiac Mechanics 
	1.2.3 Vascular Flow 
	1.2.4 Cardiac Mechanics/Cardiovascular Systems 
	1.2.5 Hemodynamics and Vascular Mechanics 
	1.2.6 Hemodynamic Modeling and Measurement Techniques 
	1.2.7 Modeling of Cerebrovascular Dynamics 
	1.2.8 Cerebrovascular Dynamics 

	1.3 Cardiac Activation 
	1.3.1 Optical Potential Mapping in the Heart 
	1.3.2 Mapping and Arrhythmias  
	1.3.3 Propagation of Electrical Activity in Cardiac Tissue 
	1.3.4 Forward-Inverse Problems in ECG and MCG 
	1.3.5 Electrocardiology 
	1.3.6 Electrophysiology and Ablation 

	1.4 Pulmonary System Analysis and Critical Care Medicine 
	1.4.1 Cardiopulmonary Modeling 
	1.4.2 Pulmonary and Cardiovascular Clinical Systems 
	1.4.3 Mechanical Circulatory Support 
	1.4.4 Cardiopulmonary Bypass/Extracorporeal Circulation 

	1.5 Modeling and Control of Cardiovascular and Pulmonary Systems 
	1.5.1 Heart Rate Variability I: Modeling and Clinical Aspects 
	1.5.2 Heart Rate Variability II: Nonlinear processing 
	1.5.3 Neural Control of the Cardiovascular System II 
	1.5.4 Heart Rate Variability 
	1.5.5 Neural Control of the Cardiovascular System I 


	2. Neural Systems and Engineering 
	2.1 Neural Imaging and Sensing  
	2.1.1 Brain Imaging 
	2.1.2 EEG/MEG processing

	2.2 Neural Computation: Artificial and Biological 
	2.2.1 Neural Computational Modeling Closely Based on Anatomy and Physiology 
	2.2.2 Neural Computation 

	2.3 Neural Interfacing 
	2.3.1 Neural Recording 
	2.3.2 Cultured neurons: activity patterns, adhesion & survival 
	2.3.3 Neuro-technology 

	2.4 Neural Systems: Analysis and Control 
	2.4.1 Neural Mechanisms of Visual Selection 
	2.4.2 Models of Dynamic Neural Systems 
	2.4.3 Sensory Motor Mapping 
	2.4.4 Sensory Motor Control Systems 

	2.5 Neuro-electromagnetism 
	2.5.1 Magnetic Stimulation 
	2.5.2 Neural Signals Source Localization 

	2.6 Clinical Neural Engineering 
	2.6.1 Detection and mechanisms of epileptic activity 
	2.6.2 Diagnostic Tools 

	2.7 Neuro-electrophysiology 
	2.7.1 Neural Source Mapping 
	2.7.2 Neuro-Electrophysiology 
	2.7.3 Brain Mapping 


	3. Neuromuscular Systems and Rehabilitation Engineering 
	3.1 EMG 
	3.1.1 EMG modeling 
	3.1.2 Estimation of Muscle Fiber Conduction velocity 
	3.1.3 Clinical Applications of EMG 
	3.1.4 Analysis and Interpretation of EMG 

	3. 2 Posture and Gait 
	3.2.1 Posture and Gait

	3.3.Central Control of Movement 
	3.3.1 Central Control of movement 

	3.4 Peripheral Neuromuscular Mechanisms 
	3.4.1 Peripheral Neuromuscular Mechanisms II
	3.4.2 Peripheral Neuromuscular Mechanisms I 

	3.5 Functional Electrical Stimulation 
	3.5.1 Functional Electrical Stimulation 

	3.6 Assistive Devices, Implants, and Prosthetics 
	3.6.1 Assistive Devices, Implants and Prosthetics  

	3.7 Sensory Rehabilitation 
	3.7.1 Sensory Systems and Rehabilitation:Hearing & Speech 
	3.7.2 Sensory Systems and Rehabilitation  

	3.8 Orthopedic Biomechanics 
	3.8.1 Orthopedic Biomechanics 


	4. Biomedical Signal and System Analysis 
	4.1 Nonlinear Dynamical Analysis of Biosignals: Fractal and Chaos 
	4.1.1 Nonlinear Dynamical Analysis of Biosignals I 
	4.1.2 Nonlinear Dynamical Analysis of Biosignals II 

	4.2 Intelligent Analysis of Biosignals 
	4.2.1 Neural Networks and Adaptive Systems in Biosignal Analysis 
	4.2.2 Fuzzy and Knowledge-Based Systems in Biosignal Analysis 
	4.2.3 Intelligent Systems in Speech Analysis 
	4.2.4 Knowledge-Based and Neural Network Approaches to Biosignal Analysis 
	4.2.5 Neural Network Approaches to Biosignal Analysis 
	4.2.6 Hybrid Systems in Biosignal Analysis 
	4.2.7 Intelligent Systems in ECG Analysis 
	4.2.8 Intelligent Systems in EEG Analysis 

	4.3 Analysis of Nonstationary Biosignals 
	4.3.1 Analysis of Nonstationary Biosignals:EEG Applications II 
	4.3.2 Analysis of Nonstationary Biosignals:EEG Applications I
	4.3.3 Analysis of Nonstationary Biosignals:ECG-EMG Applications I 
	4.3.4 Analysis of Nonstationary Biosignals:Acoustics Applications I 
	4.3.5 Analysis of Nonstationary Biosignals:ECG-EMG Applications II 
	4.3.6 Analysis of Nonstationary Biosignals:Acoustics Applications II 

	4.4 Statistical Analysis of Biosignals 
	4.4.1 Statistical Parameter Estimation and Information Measures of Biosignals 
	4.4.2 Detection and Classification Algorithms of Biosignals I 
	4.4.3 Special Session: Component Analysis in Biosignals 
	4.4.4 Detection and Classification Algorithms of Biosignals II 

	4.5 Mathematical Modeling of Biosignals and Biosystems 
	4.5.1 Physiological Models 
	4.5.2 Evoked Potential Signal Analysis 
	4.5.3 Auditory System Modelling 
	4.5.4 Cardiovascular Signal Analysis 

	4.6 Other Methods for Biosignal Analysis 
	4.6.1 Other Methods for Biosignal Analysis 


	5. Medical and Cellular Imaging and Systems 
	5.1 Nuclear Medicine and Imaging 
	5.1.1 Image Reconstruction and Processing 
	5.1.2 Magnetic Resonance Imaging 
	5.1.3 Imaging Systems and Applications 

	5.2 Image Compression, Fusion, and Registration 
	5.2.1 Imaging Compression 
	5.2.2 Image Filtering and Enhancement 
	5.2.3 Imaging Registration 

	5.3 Image Guided Surgery 
	5.3.1 Image-Guided Surgery 

	5.4 Image Segmentation/Quantitative Analysis 
	5.4.1 Image Analysis and Processing I 
	5.4.2 Image Segmentation 
	5.4.3 Image Analysis and Processing II 

	5.5 Infrared Imaging 
	5.5.1 Clinical Applications of IR Imaging I 
	5.5.2 Clinical Applications of IR Imaging II 
	5.5.3 IR Imaging Techniques 


	6. Molecular, Cellular and Tissue Engineering 
	6.1 Molecular and Genomic Engineering 
	6.1.1 Genomic Engineering: 1 
	6.1.2 Genomic Engineering II 

	6.2 Cell Engineering and Mechanics 
	6.2.1 Cell Engineering

	6.3 Tissue Engineering 
	6.3.1 Tissue Engineering 

	6.4. Biomaterials 
	6.4.1 Biomaterials 


	7. Biomedical Sensors and Instrumentation 
	7.1 Biomedical Sensors 
	7.1.1 Optical Biomedical Sensors 
	7.1.2 Algorithms for Biomedical Sensors 
	7.1.3 Electro-physiological Sensors 
	7.1.4 General Biomedical Sensors 
	7.1.5 Advances in Biomedical Sensors 

	7.2 Biomedical Actuators 
	7.2.1 Biomedical Actuators 

	7.3 Biomedical Instrumentation 
	7.3.1 Biomedical Instrumentation 
	7.3.2 Non-Invasive Medical Instrumentation I 
	7.3.3 Non-Invasive Medical Instrumentation II 

	7.4 Data Acquisition and Measurement 
	7.4.1 Physiological Data Acquisition 
	7.4.2 Physiological Data Acquisition Using Imaging Technology 
	7.4.3 ECG & Cardiovascular Data Acquisition 
	7.4.4 Bioimpedance 

	7.5 Nano Technology 
	7.5.1 Nanotechnology 

	7.6 Robotics and Mechatronics 
	7.6.1 Robotics and Mechatronics 


	8. Biomedical Information Engineering 
	8.1 Telemedicine and Telehealth System 
	8.1.1 Telemedicine Systems and Telecardiology 
	8.1.2 Mobile Health Systems 
	8.1.3 Medical Data Compression and Authentication 
	8.1.4 Telehealth and Homecare 
	8.1.5 Telehealth and WAP-based Systems 
	8.1.6 Telemedicine and Telehealth 

	8.2 Information Systems 
	8.2.1 Information Systems I
	8.2.2 Information Systems II 

	8.3 Virtual and Augmented Reality 
	8.3.1 Virtual and Augmented Reality I 
	8.3.2 Virtual and Augmented Reality II 

	8.4 Knowledge Based Systems 
	8.4.1 Knowledge Based Systems I 
	8.4.2 Knowledge Based Systems II 


	9. Health Care Technology and Biomedical Education 
	9.1 Emerging Technologies for Health Care Delivery 
	9.1.1 Emerging Technologies for Health Care Delivery 

	9.2 Clinical Engineering 
	9.2.1 Technology in Clinical Engineering 

	9.3 Critical Care and Intelligent Monitoring Systems 
	9.3.1 Critical Care and Intelligent Monitoring Systems 

	9.4 Ethics, Standardization and Safety 
	9.4.1 Ethics, Standardization and Safety 

	9.5 Internet Learning and Distance Learning 
	9.5.1 Technology in Biomedical Engineering Education and Training 
	9.5.2 Computer Tools Developed by Integrating Research and Education 


	10. Symposia and Plenaries 
	10.1 Opening Ceremonies 
	10.1.1 Keynote Lecture 

	10.2 Plenary Lectures 
	10.2.1 Molecular Imaging with Optical, Magnetic Resonance, and 
	10.2.2 Microbioengineering: Microbe Capture and Detection 
	10.2.3 Advanced distributed learning, Broadband Internet, and Medical Education 
	10.2.4 Cardiac and Arterial Contribution to Blood Pressure 
	10.2.5 Hepatic Tissue Engineering 
	10.2.6 High Throughput Challenges in Molecular Cell Biology: The CELL MAP

	10.3 Minisymposia 
	10.3.1 Modeling as a Tool in Neuromuscular and Rehabilitation 
	10.3.2 Nanotechnology in Biomedicine 
	10.3.3 Functional Imaging 
	10.3.4 Neural Network Dynamics 
	10.3.5 Bioinformatics 
	10.3.6 Promises and Pitfalls of Biosignal Analysis: Seizure Prediction and Management 



	Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	Ö
	P
	Q
	R
	S
	T
	U
	Ü
	V
	W
	X
	Y
	Z

	Keyword Index
	-
	¦ 
	1
	2
	3
	4
	9
	A
	B
	C
	D
	E
	F
	G
	H
	I
	i
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Committees
	Sponsors
	CD-Rom Help
	-------------------------
	Return
	Previous Page
	Next Page
	Previous View
	Next View
	Print
	-------------------------
	Query
	Query Results
	-------------------------
	Exit CD-Rom


